Skip to article frontmatterSkip to article content
Site not loading correctly?

This may be due to an incorrect BASE_URL configuration. See the MyST Documentation for reference.

1.3 - Weight Decay

Let’s continue from our multivariate linear regression. Now let’s incorporate the 2\ell_2 regularization (L2L_{2}) into our model.

Purpose of this Notebook:

The purposes of this notebook are:

  1. Incorporate 2\ell_2 regularization into our Perceptron from scratch

  2. Train our Perceptron

  3. Compare our Perceptron to the one prebuilt by PyTorch

import torch
from torch import nn

from platform import python_version
python_version(), torch.__version__
('3.12.12', '2.9.0+cu128')
device = 'cpu'
if torch.cuda.is_available():
    device = 'cuda'
device
'cpu'
torch.set_default_dtype(torch.float64)
def add_to_class(Class):  
    """Register functions as methods in created class."""
    def wrapper(obj): setattr(Class, obj.__name__, obj)
    return wrapper

Dataset

create dataset

XRm×nYRm×n1\begin{align*} \mathbf{X} &\in \mathbb{R}^{m \times n} \\ \mathbf{Y} &\in \mathbb{R}^{m \times n_{1}} \end{align*}
from sklearn.datasets import make_regression
import random

M: int = 10_100 # number of samples
N: int = 6 # number of input features
NO: int = 3 # number of output features

X, Y = make_regression(
    n_samples=M, 
    n_features=N, 
    n_targets=NO, 
    n_informative=N - 1,
    bias=random.random(),
    noise=1
)

print(X.shape)
print(Y.shape)
(10100, 6)
(10100, 3)

split dataset

X_train = torch.tensor(X[:100], device=device)
Y_train = torch.tensor(Y[:100], device=device)
X_train.shape, Y_train.shape
(torch.Size([100, 6]), torch.Size([100, 3]))
X_valid = torch.tensor(X[100:], device=device)
Y_valid = torch.tensor(Y[100:], device=device)
X_valid.shape, Y_valid.shape
(torch.Size([10000, 6]), torch.Size([10000, 3]))

delete raw dataset

del X
del Y

Scratch model

The only thing we are going to modify is the way in which the model weights are updated. The rest, such as parameter initialization and model training, remain unchanged.

Linear Regression model

class LinearRegression:
    def __init__(self, n_features: int, out_features: int, lambd: float):
        self.w = torch.randn(n_features, out_features, device=device)
        self.b = torch.randn(out_features, device=device)
        self.lambd = lambd

    def copy_params(self, torch_layer: torch.nn.modules.linear.Linear):
        """
        Copy the parameters from a module.linear to this model.

        Args:
            torch_layer: Pytorch module from which to copy the parameters.
        """
        self.b.copy_(torch_layer.bias.detach().clone())
        self.w.copy_(torch_layer.weight.T.detach().clone())

    def predict(self, x: torch.Tensor) -> torch.Tensor:
        """
        Predict the output for input x

        Args:
            x: Input tensor of shape (n_samples, n_features).

        Returns:
            y_pred: Predicted output tensor of shape (n_samples, out_features).
        """
        return torch.matmul(x, self.w) + self.b

    def mse_loss(self, y_true: torch.Tensor, y_pred: torch.Tensor):
        """
        MSE loss function between target y_true and y_pred.

        Args:
            y_true: Target tensor of shape (n_samples, out_features).
            y_pred: Predicted tensor of shape (n_samples, out_features).

        Returns:
            loss: MSE loss between predictions and true values.
        """
        return ((y_pred - y_true)**2).mean().item()

    def evaluate(self, x: torch.Tensor, y_true: torch.Tensor):
        """
        Evaluate the model on input x and target y_true using MSE.

        Args:
            x: Input tensor of shape (n_samples, n_features).
            y_true: Target tensor of shape (n_samples, out_features).

        Returns:
            loss: MSE loss between predictions and true values.
        """
        y_pred = self.predict(x)
        return self.mse_loss(y_true, y_pred)

    def fit(self, x_train: torch.Tensor, y_train: torch.Tensor, 
        epochs: int, lr: float, batch_size: int, 
        x_valid: torch.Tensor, y_valid: torch.Tensor):
        """
        Fit the model using gradient descent.
        
        Args:
            x_train: Input tensor of shape (n_samples, n_features).
            y_train: Target tensor of shape (n_samples,).
            epochs: Number of epochs to fit.
            lr: learning rate.
            batch_size: Int number of batch.
            x_valid: Input tensor of shape (n_valid_samples, n_features).
            y_valid: Target tensor of shape (n_valid_samples,)
        """
        for epoch in range(epochs):
            loss = []
            for batch in range(0, len(y_train), batch_size):
                end_batch = batch + batch_size

                y_pred = self.predict(x_train[batch:end_batch])

                loss.append(self.mse_loss(
                    y_train[batch:end_batch], 
                    y_pred
                ))

                self.update(
                    x_train[batch:end_batch], 
                    y_train[batch:end_batch], 
                    y_pred, 
                    lr
                )

            loss = round(sum(loss) / len(loss), 4)
            loss_v = round(self.evaluate(x_valid, y_valid), 4)
            print(f'epoch: {epoch} - MSE: {loss} - MSE_v: {loss_v}')

Parameters update

objective function

Now instead of training the model with the gradient of the loss function, we are going to use the objective function JJ. Typically our objective function is as follows.

J(Y^,θ)=L(Y^)+regularizationJ(\hat{\mathbf{Y}}, \mathbf{\theta}) = L(\hat{\mathbf{Y}}) + \text{regularization}

where θ\mathbf{\theta} is an arbitrary parameter.

Note: Do not use the objective function to evaluate the model.

L2 regularization

As a weight decay technique, we will use regularization, commonly 2\ell_2 or L2L_{2}.

2(θ)=λ2θ22\ell_2(\mathbf{\theta}) = \frac{\lambda}{2} \left\| \mathbf{\theta} \right\|^{2}_{2}

where commonly θRn\mathbf{\theta} \in \mathbb{R}^{n}.

Note: λR\lambda \in \mathbb{R} is called as a hyperparameter, because it is a parameter set by the developer (you) not by the model.

But we have WRn×n1\mathbf{W} \in \mathbb{R}^{n \times n_{1}}, then we need to do an equivalence operation.

2(W)=λ2i=1nj=1n1wij2=λ2sum(W2)\begin{align*} \ell_2(\mathbf{W}) &= \frac{\lambda}{2} \sum_{i=1}^{n} \sum_{j=1}^{n_{1}} w_{ij}^{2} \\ &= \frac{\lambda}{2} \text{sum} \left( \mathbf{W}^{2} \right) \end{align*}

where A2{\mathbf{A}}^2 is element-wise power or also A2=AA{\mathbf{A}}^2 = \mathbf{A} \odot \mathbf{A}.

objective function derivative

Jwpq=Lwpq+2wpq\frac{\partial J}{\partial w_{pq}} = \frac{\partial L}{\partial w_{pq}} + \frac{\partial \ell_2}{\partial w_{pq}}
2wpq=λ2i=1nj=1n1wpq(wij2)=λwpq\begin{align*} \frac{\partial \ell_2}{\partial w_{pq}} &= \frac{\lambda}{2} \sum_{i=1}^{n} \sum_{j=1}^{n_{1}} \frac{\partial}{\partial w_{pq}} \left( w_{ij}^{2} \right) \\ &= \lambda w_{pq} \end{align*}

Because

wijwpq={1if i=p,j=q0otherwise\frac{\partial w_{ij}}{\partial w_{pq}} = \begin{cases} 1 & \text{if } i=p, j=q \\ 0 & \text{otherwise} \end{cases}

In general, for all p=1,,np = 1, \ldots, n and q=1,,n1q = 1, \ldots, n_{1}.

2W=λW\frac{\partial \ell_2}{\partial \mathbf{W}} = \lambda \mathbf{W}

Remark: W2Rn×n1\nabla_{\mathbf{W}}\ell_2 \in \mathbb{R}^{n \times n_{1}}.

JW=LW+2W=WL+λW\begin{align*} \frac{\partial J}{\partial \mathbf{W}} &= {\color{Orange} {\frac{\partial L}{\partial \mathbf{W}}}} + {\color{Cyan} {\frac{\partial \ell_2}{\partial \mathbf{W}}}} \\ &= {\color{Orange} {\nabla_{\mathbf{W}}L}} + {\color{Cyan} {\lambda \mathbf{W}}} \end{align*}
@add_to_class(LinearRegression)
def update(self, x: torch.Tensor, y_true: torch.Tensor, y_pred: torch.Tensor, lr: float):
    """
    Update the model parameters with L2 regularization.

    Args:
       x: Input tensor of shape (n_samples, n_features).
       y_true: Target tensor of shape (n_samples, n_features).
       y_pred: Predicted output tensor of shape (n_samples, n_features).
       lr: Learning rate. 
    """
    delta = 2 * (y_pred - y_true) / y_true.numel()
    self.b -= lr * delta.sum(axis=0)
    self.w -= lr * (torch.matmul(x.T, delta) + self.lambd * self.w) # L2 regularization

Scratch vs Torch.nn

Torch.nn model

class TorchLinearRegression(nn.Module):
    def __init__(self, n_features, n_out_features):
        super(TorchLinearRegression, self).__init__()
        self.layer = nn.Linear(n_features, n_out_features, device=device)
        self.loss = nn.MSELoss()

    def forward(self, x):
        return self.layer(x)
    
    def evaluate(self, x, y):
        self.eval()
        with torch.no_grad():
            y_pred = self.forward(x)
            return self.loss(y_pred, y).item()
    
    def fit(self, x, y, epochs, lr, batch_size, x_valid, y_valid, weight_decay):
        
        optimizer = torch.optim.SGD([
            {'params': self.layer.weight, 'weight_decay': weight_decay},
            {'params': self.layer.bias} # it is important to specify the weight decay for the bias.
        ], lr=lr)

        for epoch in range(epochs):
            loss_t = []
            for batch in range(0, len(y), batch_size):
                end_batch = batch + batch_size

                y_pred = self.forward(x[batch:end_batch])
                loss = self.loss(y_pred, y[batch:end_batch])
                loss_t.append(loss.item())

                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

            loss_t = round(sum(loss_t) / len(loss_t), 4)
            loss_v = round(self.evaluate(x_valid, y_valid), 4)
            print(f'epoch: {epoch} - MSE: {loss_t} - MSE_v: {loss_v}')
torch_model = TorchLinearRegression(N, NO)

scratch model

LAMBD: float = 0.01

model = LinearRegression(N, NO, LAMBD)
model.lambd
0.01

evals

import MAPE modified

# This cell imports torch_mape 
# if you are running this notebook locally 
# or from Google Colab.

import os
import sys

module_path = os.path.abspath(os.path.join('..'))
if module_path not in sys.path:
    sys.path.append(module_path)

try:
    from tools.torch_metrics import torch_mape as mape
    print('mape imported locally.')
except ModuleNotFoundError:
    import subprocess

    repo_url = 'https://raw.githubusercontent.com/PilotLeoYan/inside-deep-learning/main/content/tools/torch_metrics.py'
    local_file = 'torch_metrics.py'
    
    subprocess.run(['wget', repo_url, '-O', local_file], check=True)
    try:
        from torch_metrics import torch_mape as mape # type: ignore
        print('mape imported from GitHub.')
    except Exception as e:
        print(e)
mape imported locally.

predict

mape(
    model.predict(X_valid),
    torch_model.forward(X_valid)
)
4536.602432801

copy parameters

model.copy_params(torch_model.layer)
parameters = (model.b.clone(), model.w.clone())

predict after copy parameters

mape(
    model.predict(X_valid),
    torch_model.forward(X_valid)
)
0.0

loss

mape(
    model.evaluate(X_valid, Y_valid),
    torch_model.evaluate(X_valid, Y_valid)
)
0.0

train

LR = 0.01 # learning rate
EPOCHS = 16 # number of epochs
BATCH = len(X_train) // 3 # batch size
torch_model.fit(
    X_train, Y_train, 
    EPOCHS, LR, BATCH, 
    X_valid, Y_valid,
    LAMBD
)
epoch: 0 - MSE: 9379.6668 - MSE_v: 11418.2368
epoch: 1 - MSE: 8959.7574 - MSE_v: 10942.8714
epoch: 2 - MSE: 8563.3423 - MSE_v: 10488.7917
epoch: 3 - MSE: 8188.2793 - MSE_v: 10054.8382
epoch: 4 - MSE: 7832.7495 - MSE_v: 9639.9506
epoch: 5 - MSE: 7495.1956 - MSE_v: 9243.1538
epoch: 6 - MSE: 7174.2734 - MSE_v: 8863.5466
epoch: 7 - MSE: 6868.8127 - MSE_v: 8500.2915
epoch: 8 - MSE: 6577.7858 - MSE_v: 8152.6074
epoch: 9 - MSE: 6300.2827 - MSE_v: 7819.7632
epoch: 10 - MSE: 6035.4912 - MSE_v: 7501.0722
epoch: 11 - MSE: 5782.6804 - MSE_v: 7195.8875
epoch: 12 - MSE: 5541.1882 - MSE_v: 6903.5987
epoch: 13 - MSE: 5310.4102 - MSE_v: 6623.6283
epoch: 14 - MSE: 5089.7919 - MSE_v: 6355.429
epoch: 15 - MSE: 4878.8213 - MSE_v: 6098.4816
model.fit(
    X_train, Y_train, 
    EPOCHS, LR, BATCH, 
    X_valid, Y_valid
)
epoch: 0 - MSE: 9379.6668 - MSE_v: 11418.2368
epoch: 1 - MSE: 8959.7574 - MSE_v: 10942.8714
epoch: 2 - MSE: 8563.3423 - MSE_v: 10488.7917
epoch: 3 - MSE: 8188.2793 - MSE_v: 10054.8382
epoch: 4 - MSE: 7832.7495 - MSE_v: 9639.9506
epoch: 5 - MSE: 7495.1956 - MSE_v: 9243.1538
epoch: 6 - MSE: 7174.2734 - MSE_v: 8863.5466
epoch: 7 - MSE: 6868.8127 - MSE_v: 8500.2915
epoch: 8 - MSE: 6577.7858 - MSE_v: 8152.6074
epoch: 9 - MSE: 6300.2827 - MSE_v: 7819.7632
epoch: 10 - MSE: 6035.4912 - MSE_v: 7501.0722
epoch: 11 - MSE: 5782.6804 - MSE_v: 7195.8875
epoch: 12 - MSE: 5541.1882 - MSE_v: 6903.5987
epoch: 13 - MSE: 5310.4102 - MSE_v: 6623.6283
epoch: 14 - MSE: 5089.7919 - MSE_v: 6355.429
epoch: 15 - MSE: 4878.8213 - MSE_v: 6098.4816

predict after training

mape(
    model.predict(X_valid),
    torch_model.forward(X_valid)
)
7.350389485622577e-14

weight

mape(
    model.w.clone(),
    torch_model.layer.weight.detach().T
)
1.1728863346159968e-14

bias

mape(
    model.b.clone(),
    torch_model.layer.bias.detach()
)
4.447106248397419e-14