Skip to article frontmatterSkip to article content
Site not loading correctly?

This may be due to an incorrect BASE_URL configuration. See the MyST Documentation for reference.

Python Version PyTorch Version Jupyter Notebook Latest commit Number of issues Number of PRs License

Inside Deep Learning is a collection of Jupyer notebooks aimed at exploring the vast field of machine learning. Sometimes it is difficult to find implementations of important concepts or ideas, so here we try to implement and explain those ideas using Jupyter Notebooks and PyTorch.

This repository is not intended for beginners or LMs lovers. Rather, it is a compilation of notes on all possible ML topics, especially DL.

Recommended references πŸ“šοΈ: Deisenroth et al. (2020), Goodfellow et al. (2016), Zhang et al. (2023).

Table of ContentsΒΆ

  1. Linear regression πŸ“ˆ

    1. πŸ€– Simple linear regression

    2. πŸ€– Multivariate linear regression

    3. πŸ€– Weight decay (L2 regularization)

  2. Classification πŸ“Š

    1. πŸ€– Multiclass classfication

  3. Multilayer Perceptron 🧠

    1. πŸ€– Multilayer perceptron (MLP)

How to CloneΒΆ

  1. Clone the repository:

    git clone https://github.com/PilotLeoYan/inside-deep-learning.git
  2. Create environment:
    Inside Deep Learning is written in python=3.14.0. We recommend using Conda to manage dependencies.

    conda create --name idl -y python=3.14.0
    conda activate idl
    pip install --upgrade pip
    cd inside-deep-learning
  3. A. Install dependencies with cuda:

    pip install -r requirements-cuda.txt

    B. Install dependencies without cuda:

    pip install -r requirements.txt

ContributingΒΆ

If you find this repo useful, please star (β˜…) this repo or cite using the following bibtex entry:

@misc{pilotleoyan25idl,
  title={Inside-Deep-learning},
  author={Rivera, Leonardo Fabyan Ortega},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished={\url{https://github.com/PilotLeoYan/inside-deep-learning}},
  year={2025}
}

>>> Github Repository: Inside Deep Learning <<<

Star HistoryΒΆ


If you would like to contact me you can send me an email.

ReferencesΒΆ
  1. Deisenroth, M. P., Faisal, A. A., & Ong, C. S. (2020). Mathematics for machine learning. Cambridge University Press.
  2. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
  3. Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2023). Dive into Deep Learning. Cambridge University Press.